M1. (a) (i) $\underline{4.98 \times 10^{-3}}$

Only
(ii) 2.49×10^{-3}

Allow answer to (a)(i) $\div 2$
Allow answers to 2 or more significant figures
(iii) 2.49×10^{-2}
(iv) 138.2

3.44 divided by the candidate.s answer to (a)(iii) 138.2 or 138.1 (i.e. to 1 d.p.)

(v) $(138-60) \div 2=39.1$

Allow 39 - 39.1
Allow ((a)(iv) -60$) \div 2$

K/potassium

Allow consequential on candidate's answer to (a)(iv) and (a)(v) if a group 1 metal Ignore + sign
(b) $\mathrm{PV}=\mathrm{n}$ RT or rearranged

If incorrectly rearranged $C E=0$

$$
\mathrm{T}=\frac{0.022 \times 100000}{0.658 \times 8.31}
$$

Correct M2 also scores M1

```
402(.3) K (or 129 % C)
                                    allow 402-403K
    or 129-130 % C
    do not penalise *}\mp@subsup{}{}{\circ
    M3 must include units for mark
```

(c) Pressure build up from gas/may explode/stopper fly out/glass shatters/breaks

Penalise incorrect gas
(d) (i) $\quad M_{\mathrm{t}}=84.3$

If 84 used, max 1
$\underline{6.27}=0.074(4)$
84.3

CE if not 84 or 84.3
Allow answers to 2 or more significant figures
M2 $=0.074-0.075$
(ii) $\mathrm{M} 1 \quad \mathrm{M}_{\mathrm{r}} \mathrm{MgSO}_{4}=120(.4)$
allow 120.3 and 120.1
CE if wrong Mr

M2 Expected mass $\mathrm{MgSO}_{4}=0.074(4) \times 120(.4)=8.96 \mathrm{~g}$ Allow $8.8-9.0$ or candidate's answer to (d)(i) $\times 120(.4)$

M3 95% yield $=\frac{8.96 \times 95}{100}=8.51 \mathrm{~g}$
Allow 8.3-8.6
M3 dependent on M2
Alternative method
M2 $\quad 0.074(4) \times 95 / 100=0.0707$
M3 $0.0707 \times 120(.4)=8.51 \mathrm{~g}$
Allow (d) $(i) \times 95 / 100$

Allow 8.3 - 8.6
M3 dependent on M2

M2.(a) $\quad 2-6$ drops / 0.1-0.3 cm^{3}
Accept 'a few drops'
(b) Incorrect volume recorded / space will fill during titration / produces larger titre value

Do not accept 'to give an accurate result' without further qualification
Do not accept references to contamination

M3.(a) 34.0
Penalise precision once
(b) $1.76 \mathrm{~mol} \mathrm{dm}^{-3}$
(c) answer to (b) divided by 0.05

35(.3) on correct figures

Shows working
Correct answer only scores this mark
Lose this mark if any units are given for the factor
Page 4

M4.
(a) (i) Ammonia

If reagent is missing or incorrect cannot score M3

Starts as a pink (solution)

Changes to a yellow/straw (solution)
Allow pale brown
Do not allow reference to a precipitate
(ii) (dark) brown

Do not allow pale/straw/yellow-brown (i.e. these and other shades except for dark brown)
(b) (i) Ruby/red-blue/purple/violet/green

Do not allow red or blue
If ppt mentioned contradiction/CE =0

Green
If ppt mentioned contradiction/CE $=0$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{]^{3+}}+6 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{]^{3}}\right]^{2}+6 \mathrm{H}_{2} \mathrm{O}\right.$

Formula of product
Can score this mark in (b) (ii)
(ii) $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{OH}^{-}$
$2\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CrO}_{4}{ }^{2-}+8 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$
Allow 1 mark out of 2 for a balanced half-equation such as
$\mathrm{Cr}(\mathrm{III}) \rightarrow \mathrm{Cr}(\mathrm{VI})+3 e^{-}$
or $\mathrm{Cr}^{++}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CrO}_{4}{ }^{2-}+8 \mathrm{H}^{+}+3 e^{-}$etc
also for 2 Cr (III) $+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CrO}_{4}{ }^{2-}$ (unbalanced)

Yellow
Do not allow orange
(c) $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}$
if no equation and uses given ratio can score M2, M3, M4 \& M5

Moles $\mathrm{MnO}_{4}^{-}=(24.35 / 1000) \times 0.0187=\underline{4.55 \times 10^{-4}}$
Note value must be quoted to at least 3 sig. figs.
M2 is for 4.55×10^{-4}

Moles $\mathrm{H}_{2} \mathrm{O}_{2}=\left(4.55 \times 10^{-4}\right) \times 5 / 2=1.138 \times 10^{-3}$
M3 is for $\times 5 / 2$ (or $7 / 3$)
Mark consequential on molar ratio from candidate's equation

Moles $\mathrm{H}_{2} \mathrm{O}_{2}$ in $5 \mathrm{~cm}^{3}$ original
M4 is for $\times 10$

1
$=\left(1.138 \times 10^{-3}\right) \underline{10}=0.01138$
Original $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.01138 \times(1000 / 5)=2.28 \mathrm{~mol} \mathrm{dm}^{-3}$
(allow 2.25-2.30)
M5 is for consequentially correct answer from (answer to mark 4) $\times(1000 / 5)$
Note an answer of between 2.25 and 2.30 is worth 4 marks)
If candidate uses given ratio $3 / 7$ max 4 marks:
M1: Moles of $\mathrm{MnO}_{4}^{-}=4.55 \times 10^{-4}$
M2: Moles $\mathrm{H}_{2} \mathrm{O}_{2}=\left(4.55 \times 10^{-4}\right) \times 7 / 3=1.0617 \times 10^{-3}$
M3: Moles $\mathrm{H}_{2} \mathrm{O}_{2}$ in $5 \mathrm{~cm}^{3}$ original
$=\left(1.0617 \times 10^{-3}\right) \times 10=0.01062$
M4: Original $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.01062 \times(1000 / 5)=2.12 \mathrm{~mol} \mathrm{dm}^{-3}$
(allow 2.10 to 2.15)

M5.(a) $\quad \mathrm{pV}=\mathrm{nRT}$
Do not penalise incorrect use of capitals / lower case letters.
Accept correct rearrangement of equation.
(b) $\quad 2 \mathrm{C}_{4} \mathrm{H}_{10}+5 \mathrm{O}_{2} \rightarrow \mathbf{4 \mathrm { CH } _ { 3 } \mathrm { COOH } + 2 \mathrm { H } _ { 2 } \mathrm { O }}$

Accept any correct combination of multiples, including fractions.
(c) 23.0 g ethanol produces 30.0 g ethanoic acid
15.1\% (4.54 $\times 100 / 30$)

Do not penalise precision.
15.1% scores 2 marks.
Accept consequential answer on wrong mass of ethanoic acid for second mark only.

M6.(a) (i) 0.150
Accept 0.15
(ii) 0.0750

Accept 0.75
Accept consequential answer from (i)
(iii) 106.0

Must have M_{r} to 1 d.p. to score mark.
Only penalise once in paper
Do not penalise correct answer in g.
(iv) 7.95

Accept consequential answer from (ii) and (iii).
(b) Hazard: (acid) corrosive

Precaution: eye protection / gloves
Both hazard and appropriate precaution needed for 1 mark.
Do not accept 'toxic' as hazard.
Accept 'irritant vapour' and 'fume cupboard'.
Do not accept 'ingest'.

